Topographic response to mantle lithosphere removal in the southern Sierra Nevada region, California
نویسندگان
چکیده
Geological studies of mantle xenoliths entrained in late Neogene–Quaternary lavas from the southern Sierra Nevada region and regional geophysical studies suggest that the highdensity mantle lithosphere that formed beneath the Sierra Nevada batholith in conjunction with arc magmatism is being convectively removed as a ‘‘drip’’ structure. This structure, as imaged seismically, is roughly cylindrical in shape with a diameter of ;100 km, and extends to ;225 km depth. Centered above this structure is a region ;120 km in diameter that is undergoing active subsidence relative to adjacent regions. Such subsidence is seen in the active fluvial-alluvial sediment flooding of mountainous topography of the southwestern Sierra and in the development of the adjacent Tulare Lake basin of the San Joaquin Valley. Dynamic modeling of such upper-mantle drip structures predicts a phase of overlying surface subsidence during the most vigorous phase of drip formation. The southern Sierra upper mantle drip and the overlying crust appear to be in this phase of their dynamically coupled evolution.
منابع مشابه
Rayleigh-Taylor instability under a shear stress free top boundary condition and its relevance to removal of mantle lithosphere from beneath the Sierra Nevada
T33A-1150. Saleeby, J., and Z. Foster (2004), Topographic response to mantle lithosphere removal in the southern Sierra Nevada region, California,Geology,
متن کاملFoundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.
Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, sug...
متن کاملPliocene–Quaternary subsidence and exhumation of the southeastern San Joaquin Basin, California, in response to mantle lithosphere removal
Thermomechanical models of mantle lithosphere removal from beneath the southern Sierra Nevada region, California (USA), predict a complex spatiotemporal pattern of vertical surface displacements. We evaluate these models by using (U-Th)/He thermochronometry, together with other paleothermometry estimates, to investigate such topographic transients. We target Tertiary strata from the Kern arch, ...
متن کاملA test of laboratory based rheological parameters of olivine from an analysis of late Cenozoic convective removal of mantle lithosphere beneath the Sierra Nevada, California, USA
S U M M A R Y We use the apparent change in mantle structure beneath the Sierra Nevada since ca. 10 Ma, which suggests convective removal of eclogite-rich mantle lithosphere, and scaling laws developed for Rayleigh–Taylor instability to place constraints on the average viscosity coefficient of the mantle lithosphere. By treating the lithosphere as a non-Newtonian fluid obeying power-law creep w...
متن کاملVelocity variations in the uppermost mantle beneath the southern Sierra Nevada and Walker Lane
[1] We model Pn waveforms from two earthquakes in the southwestern United States (Mammoth Lakes, California, and western Nevada) to determine a velocity model of the crustal and mantle structure beneath the southern Sierra Nevada and Walker Lane. We derive a one-dimensional velocity model that includes a smooth crust-mantle transition east of Death Valley and extending south into the eastern Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004